domingo, 5 de junho de 2016

Modelos com Big Bang



Excerto do livro do físico Jorge Dias de Deus (Gradiva), que acaba de ser publicado e que foi lançado na Feira do Livro de Lisboa na passada sexta-feira:

Todas as sociedades parecem ter criado as suas próprias histórias baseadas em memórias e mitos com fundamentação mais ou menos religiosa. Essas histó‑ rias surgem hoje como bases para modelos científicos que envolvem um conjunto amplo de cientistas (astro‑ físicos, biólogos, antropólogos, etc.). «De facto, explicações científicas e míticas das origens não são nem complementares nem contraditórias; têm simplesmente objectivos diferentes e estão sujeitas a diferentes constrangimentos. Histórias míticas são uma maneira de preservar memórias colectivas que não podem ser verificadas nem pelo ouvinte, nem pelo contador de histórias» (Luminet 2004). A sua função não é explicar o que aconteceu, por exemplo, no início do Universo: tal cabe à ciência com as suas teorias e modelos apoiados na observação na experiência. 


Tomemos o caso da Cosmologia Relativista, que inclui a estrutura do Universo e a dinâmica da sua evolução no quadro da Teoria da Relatividade Geral de Einstein (de 1915). De facto, Einstein elaborou uma teoria correspondendo a um Universo estático e eterno, estruturalmente estável. Mas, para isso, teve de introduzir na sua teoria uma constante: a chamada constante cosmológica. Surgiu, porém, a descoberta feita pelo astrónomo norte‑americano Edwin Hubble (1899‑1953), nos anos 20 do século passado, de que o Universo estava em expansão, sendo o afastamento entre galáxias proporcional às suas velocidades relativas. O Universo «inchava» como um balão e, deste modo, o modelo estático de Einstein tinha que ser abandonado!

 Em 1931, o físico belga Georges Lemaître (1894 ‑1966) apresentou o seu modelo para o nascimento do espaço e do tempo e para o crescimento do Universo à custa de um «átomo» inicial. Nascia assim a teoria do Big Bang.

 Nos anos 50, o conceito de «criação contínua» tinha alguma aceitação entre a comunidade científica. O austro‑inglês Hermann Bondi (1919‑2005) e o austríaco Thomas Gold (1920‑2004) avançaram então com uma teoria de «estado estacionário» — um estado que se sustentava — tendo como referência de peso o filósofo grego Aristóteles! Este tinha sempre defendido que o mundo era eterno, sem princípio nem fim. Já Platão tinha defendido a ideia oposta: o mundo tivera um co‑meço e teria um fim na altura própria. Para compensar pela gradual diluição da matéria resultante da expansão do Universo, os teóricos do estado estacionário tiveram que recorrer à criação contínua de matéria. 

Em 1948, o astrónomo britânico Fred Hoyle (1915‑2001) demonstrou que o modelo de estado estacioná‑ rio era viável, bastando para isso introduzir um novo  campo que assegurasse para sempre energia negativa e uma situação global estacionária. Mas já era tarde para modelos de «estado estacionário» e, em 1965, os físicos norte‑americanos Arno Penzias (n. 1933) e Robert Wilson (n. 1936) descobriram uma radiação elec‑ tromagnética universal (Cosmic Background Radiation, CBR), abrindo o caminho à afirmação da teoria do Big Bang. Segundo esta, o Universo teria tido uma densi‑ dade infinita há 10‑20 mil milhões de anos. Todo o espaço se encontra cheio com radiação térmica a uma temperatura de 2,73 kelvins. Estes factos são coerentes com a ideia de que o Universo começa com uma súbi‑ ta descompressão, um grande Big Bang (Phillips 1996). De facto, foi‑se mais longe: havia não só um constan‑ te afastamento das galáxias distantes como esse afas‑ tamento era, sabemos hoje, acelerado. 

Cabe aqui lembrar o conflito entre Einstein e Hoy‑ le, de um lado, e Friedmann e Lemaître, do outro. Os primeiros defendendo um Universo estacionário, eternamente estacionário, os segundos defendendo um Uni‑ verso em evolução. Enquanto Hoyle parodiava as ideias de Lemaître, inventando a «marca» Big Bang, o russo George Gamow (1904‑1968) e os seus colaboradores iniciavam a recuperação das ideias de Lemaître, no‑ meadamente a formação de núcleos leves a altas tem‑ peraturas e a emissão da radiação de corpo negro (a temperatura encontrada seria de 3,5 kelvins, não subs‑ tancialmente diferente do valor observado 2,73 kelvins). 

Como já escrevi noutro lado: «As leis gerais que se supõe governarem o Universo em seu conjunto são as da Relatividade Geral e as da Termodinâmica. A feno‑ menologia da Ciência do Universo parte da evidência experimental, multiplamente confirmada, do afastamento generalizado das galáxias e da presença da radiação térmica de fundo preenchendo uniformemente todo o espaço que nos rodeia» ( Dias de Deus, 1985). Faltou dizer na altura que a expansão era acelerada! 

O modelo‑padrão cosmológico baseia‑se na hipótese de que o Universo é homogéneo e isotrópico para es‑ calas suficientemente amplas. A inflação pode dar uma explicação para a homogeneidade a grandes escalas em resultado de uma expansão exponencial do Universo. Também estão presentes perturbações da métrica que concordam com a anisotropia da radiação de fundo. Tal pode provocar perturbações do valor da constante cosmológica (da ordem de um por cento).

De acordo com o modelo‑padrão para o Big Bang, o Universo desenvolveu‑se aproximadamente segundo as linhas gerais seguintes: 

1) Nanossegundos após o Big Bang: O Universo está cheio de um gás de partículas e antipartículas (quark‑antiquark, leptão‑antileptão, neutrino‑antineutrino, gluões, fotões). Quando a temperatura vai abaixo de 109 kelvins, os quarks, antiquarks e gluões desaparecem por aniquilação, mas, como os quarks estão em excesso (quebra de simetria matéria‑antimatéria), dá‑se a transição para partículas mais pesadas, como os neutrões e os protões do Universo actual. 

2) Um segundo após o Big Bang: O Universo consiste num gás de neutrões e protões, electrões e positrões, neutrinos e antineu‑ trinos e fotões. Com o decréscimo da temperatura, diminui a densidade do Universo, que fica demasiado baixa para haver interacção de neutrinos com a matéria. O desacoplamento a T = 2 kelvins dos neutrinos corresponde a um espectro universal, semelhante ao electromagnético, que ainda não foi detectado experimentalmente. 

3) 100 segundos após o Big Bang: Os quarks que restaram (os antiquarks tinham desaparecido) produziram neutrões que se com‑ binaram com protões dando origem a núcleos leves. Surge então um universo onde, aproximadamente, 75% da massa é hidrogénio e 25% é hélio. 

4) 300 000 anos após o Big Bang: A temperatura desce até valores da ordem de 4000 kelvins, suficientemente baixa para a for‑ mação de átomos estáveis. Núcleos de hidrogénio e hélio combinam‑se com electrões para criar átomos estáveis desses elementos. 

Até agora, o Big Bang levou‑nos a um Universo composto de hidrogénio e hélio com vestígios de elementos leves. Esta matéria primordial foi enriquecida em elementos pesados, com um ciclo de formação e evolução, em que a matéria foi transferida, entre estrelas e matéria interestelar (Phillips 1996). Um dos objectivos principais da astrofísica consiste em utilizar este ciclo para explicar as abundâncias de elementos químicos que integram actualmente o Universo. 

Os elementos químicos observados, por exemplo, no sistema solar, são em grande parte um produto da nucleossíntese durante o Big Bang e da nucleossíntese durante a evolução estelar. A fusão termonuclear numa estrela é determinada pela sua massa. O hidrogénio será queimado se a massa for superior a 0,8 vezes a massa do Sol. No caso da queima do hélio tem‑ ‑se para o limite de massa 0,5 massa do Sol. A massa de uma estrela determina em geral a sua evolução e o seu destino. Estrelas como o Sol evoluem devagar e terminam a vida como anãs brancas. Estrelas maciças evoluem rapidamente e terminam a vida por colapso catastrófico (quando a massa do núcleo central de fer‑ ro excede o chamado limite de Chandrasekhar, 1,4 vezes a massa do Sol). 

As várias fases no desenvolvimento da Cosmologia Relativista: 

1915‑1927: Os primeiros modelos (Einstein) para universos relativistas foram obtidos na ausência de observações cosmológicas.

1927‑1945: Desvios cosmológicos para o vermelho compatíveis com soluções de Friedmann‑Lemaître para Universo em expansão. 

1945‑1965: Produção por nucleossíntese de elementos leves e previsão da existência da radiação elec‑ tromagnética de fundo. 1965‑1980: Triunfo da teoria do Big Bang.

 1980‑1998: Física das altas energias e efeitos quân‑ ticos na descrição do Universo inicial. 

1998‑ : Cosmologia experimental de alta precisão com os parâmetros fundamentais sendo actual‑ mente medidos com a precisão de poucos pontos percentuais e com a emergência de novos proble‑ mas (natureza da energia escura, topologia do Universo, novas cosmologias em teorias de gra‑ vitação quântica, etc.). 

Escreveu o astrofísico francês Jean‑Pierre Luminet: «Em 1915, Einstein, e também Hilbert, apresentaram as equações correctas de campo para uma teoria re‑ lativista da gravitação. Esta teoria, designada como Relatividade Geral, propõe um novo referencial para uma compreensão do Universo. Einstein argumentava que a gravidade não era uma força, mas um efeito resultante da curvatura do espaço‑tempo causado pela distribuição de massa e energia. O Universo, até então um conceito relativamente vago, ganha uma consistência nova e transforma‑se numa entidade física definida pela sua estrutura de espaço‑tempo e a sua composição de matéria, luz, radiação, de facto todas as formas de energia. O espaço‑tempo ganha uma estrutura rica, expressa geometricamente em termos de curvatura e topologia, e fisicamente em termos do conteúdo em matéria e energia» (Luminet, 2004).

3 comentários:

  1. Ui, lá estamos nós outra vez!
    Isto que descreve é ciência? E toda a especulação nestas teorias? É curioso como uma teoria relativista vem depois assumir-se conhecedora de um absoluto... até ao nano-segundo... esta história é um contra-senso, a minha inteligência fica mais maravilhada com o conto do Capuchinho Vermelho do que com promessas de ver "o big bang por um canudo", aqui desde Lisboa. Nem tudo o que parece é, verifique este excelente relato de um colega seu, cientista sério que desmonta mais uma assumpção falsa do 'big bang':

    Dr. Pierre-Marie Robitaille: The Cosmic Microwave Background
    https://www.youtube.com/watch?v=i8ijbu3bSqI

    « Ever since Penzias and Wilson discovered that the Earth was surrounded by microwave energy, astronomers have been quick to postulate that the apparent ~3K signal represented the signature of the Big Bang. Yet long ago, Gustav Kirchhoff insisted that the setting of temperatures, using the laws of thermal emission, required enclosure. Clearly, the Big Bang can never meet this requirement. In this presentation, it will be demonstrated that the microwave fields, which surround the earth and have excited distant molecules, can be generated by the hydrogen bond within water in the condensed state. A review of the COBE and WMAP will be presented, revealing that the microwave anisotropy maps have no scientific validity. The data lack both signal to noise and reproducibility. Furthermore, the PLANCK satellite findings will be discussed. These data provide unambiguous evidence that powerful microwave fields do not exist at L2. Penzias and Wilson measured water on Earth. The correct assignment of this signal is vital to better understanding our own planet. »

    Pierre-Marie Robitaille, PhD is a Professor of Radiology at The Ohio State University, with a joint appointment in Chemical Physics. He initially trained as a spectroscopist and has wide ranging knowledge of instrumentation in the radio and microwave bands. A recognized expert in image acquisition and analysis, Professor Robitaille was responsible for doubling the world record in Magnetic Resonance Imaging in 1998. In 2000, he turned his attention to thermodynamics and astrophysics, demonstrating that the universality advanced in Kirchhoff's Law of Thermal Emission is invalid. He has published extensively on the microwave background, highlighting that this signal arises from water on the Earth and has no relationship to cosmology and has recently published a paper on the Liquid Metallic Hydrogen Solar Model (LMHSM).

    ResponderEliminar
    Respostas
    1. http://www.nytimes.com/2002/03/19/us/ripples-in-ohio-from-ad-on-the-big-bang.html

      http://sguforums.com/index.php?topic=21707.0

      http://motls.blogspot.pt/2006/12/wmap-cobe-cmb-critics.html

      https://kendalastronomer.wordpress.com/category/cranks/page/2/

      https://www.quora.com/Does-the-recent-claimed-proof-by-Pierre-Marie-Robitaille-of-the-invalidity-of-Kirchhoffs-law-of-thermal-radiation-have-any-implications-for-physics

      http://physics.stackexchange.com/questions/203449/dr-pierre-marie-robitaille-on-the-validity-of-kirchhoffs-law

      https://briankoberlein.com/2014/12/30/tilting-windmills/

      http://rationalwiki.org/wiki/Pierre-Marie_Robitaille

      Antes de cozinhar a sua resposta, gaste algum tempo a ler também todas as referências dos artigos, que explicam bastante bem exactamente o porquê de esse senhor estar totalmente errado.

      Suponho que, ouvindo você um médico em vez de um físico sobre a Teoria do Big Bang, também irá ouvir um físico em vez de um médico se tiver cancro, ou alguma outra doença terminal?

      Eliminar
  2. Bom, espero que tenha razão, de outro modo, lá vai a teoria toda ao ar, o que é realmente o mais provável, uma vez que as suas explicações da realidade não vai muito longe sem ter que inventar mais conceitos rebuscados. Essa história de ter de desprovar a existência de, por exemplo, a "matéria negra"... como se ela se tivesse provado a si própria. LOL!!! Olhe que por estes dias, pode mesmo de ter de recorrer a um médico e a um físico pela razão inversa à sua lógica, tal é o estado da sanidade e o grau de especialização.

    ResponderEliminar

1) Identifique-se com o seu verdadeiro nome.
2) Seja respeitoso e cordial, ainda que crítico. Argumente e pense com profundidade e seriedade e não como quem "manda bocas".
3) São bem-vindas objecções, correcções factuais, contra-exemplos e discordâncias.